Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Cardiovasc Med ; 10: 1068390, 2023.
Article in English | MEDLINE | ID: covidwho-20242573

ABSTRACT

A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.

2.
Hum Vaccin Immunother ; 19(1): 2199653, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2298933

ABSTRACT

COVID-19 vaccine-related adverse events are mostly minor to moderate, and serious events are rare. Single cases of Raynaud's phenomenon (RP) in temporal proximity to COVID-19 vaccination have been reported. Demographic data, medical history, and detailed information regarding vaccination status and RP characteristics were obtained from patients with confirmed RP after COVID-19 vaccination. Fifteen participants reported the initial manifestation of RP, which occurred in 40% after the first, in 33% after the second, and in 27% after the third vaccination. RP development and occurrence of episodes were not linked to any specific vaccine type. New onset of disease was observed in 40% of the vaccinees after BNT162b2, in 33% after mRNA-1273, and in 27% after ChAdOx1 vaccination. Three out of four participants with preexisting RP prior to COVID-19 vaccination reported aggravation in frequency and intensity after immunization. Although COVID-19 vaccination is pivotal in controlling the pandemic, the observed temporal association between vaccine administration and RP occurrence warrants global activities to support pharmacovigilance for the detection of adverse reactions, one of which may include RP.


Subject(s)
COVID-19 Vaccines , COVID-19 , Raynaud Disease , Humans , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Raynaud Disease/diagnosis , Vaccination/adverse effects
3.
Open Forum Infect Dis ; 9(9): ofac437, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2037501

ABSTRACT

Background: Identification of bacterial coinfection in patients with coronavirus disease 2019 (COVID-19) facilitates appropriate initiation or withholding of antibiotics. The Inflammatix Bacterial Viral Noninfected (IMX-BVN) classifier determines the likelihood of bacterial and viral infections. In a multicenter study, we investigated whether IMX-BVN version 3 (IMX-BVN-3) identifies patients with COVID-19 and bacterial coinfections or superinfections. Methods: Patients with polymerase chain reaction-confirmed COVID-19 were enrolled in Berlin, Germany; Basel, Switzerland; and Cleveland, Ohio upon emergency department or hospital admission. PAXgene Blood RNA was extracted and 29 host mRNAs were quantified. IMX-BVN-3 categorized patients into very unlikely, unlikely, possible, and very likely bacterial and viral interpretation bands. IMX-BVN-3 results were compared with clinically adjudicated infection status. Results: IMX-BVN-3 categorized 102 of 111 (91.9%) COVID-19 patients into very likely or possible, 7 (6.3%) into unlikely, and 2 (1.8%) into very unlikely viral bands. Approximately 94% of patients had IMX-BVN-3 unlikely or very unlikely bacterial results. Among 7 (6.3%) patients with possible (n = 4) or very likely (n = 3) bacterial results, 6 (85.7%) had clinically adjudicated bacterial coinfection or superinfection. Overall, 19 of 111 subjects for whom adjudication was performed had a bacterial infection; 7 of these showed a very likely or likely bacterial result in IMX-BVN-3. Conclusions: IMX-BVN-3 identified COVID-19 patients as virally infected and identified bacterial coinfections and superinfections. Future studies will determine whether a point-of-care version of the classifier may improve the management of COVID-19 patients, including appropriate antibiotic use.

4.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-2010904

ABSTRACT

Background Identification of bacterial coinfection in COVID-19 patients facilitates appropriate initiation or withholding of antibiotics. The IMX-BVN classifier determines the likelihood of bacterial and viral infections. In a multicenter study, we investigated whether IMX-BVN-3 identifies patients with COVID-19 and bacterial co- or superinfections. Methods PCR-confirmed COVID-19 patients were enrolled in Berlin (Germany), Basel (Switzerland), and Cleveland (both US) upon ED or hospital admission. PAXgene Blood RNA was extracted, and 29 host mRNAs were quantified. BVN-3 categorized patients into Very unlikely, Unlikely, Possible, and Very likely bacterial and viral interpretation bands. BVN-3 results were compared with clinically adjudicated infection status. Results BVN-3 categorized 102 (91.9%) of 111 COVID-19 patients into Very likely or Possible viral bands, 7 (6.3%) into Unlikely, and 2 (1.8%) into Very unlikely viral bands. 93.7% of patients had BVN-3 Unlikely or Very unlikely bacterial results. Among 7 (6.3%) patients with Possible (4) or Very likely (3) bacterial results, 6 (85.7%) had clinically adjudicated bacterial co- or superinfection. Overall, 19 of 111 subjects for whom adjudication was performed had a bacterial infection;7 of these showed a Very likely or Likely bacterial result in IMX-BVN-3. Conclusions BVN-3 identified COVID patients as virally infected and identified bacterial co- and superinfections. Future studies will determine whether a POC version of the classifier may improve the management of COVID-19 patients including appropriate antibiotic use.

5.
Viruses ; 13(12)2021 12 07.
Article in English | MEDLINE | ID: covidwho-1554805

ABSTRACT

BACKGROUND: We evaluated how plasma proteomic signatures in patients with suspected COVID-19 can unravel the pathophysiology, and determine kinetics and clinical outcome of the infection. METHODS: Plasma samples from patients presenting to the emergency department (ED) with symptoms of COVID-19 were stratified into: (1) patients with suspected COVID-19 that was not confirmed (n = 44); (2) non-hospitalized patients with confirmed COVID-19 (n = 44); (3) hospitalized patients with confirmed COVID-19 (n = 53) with variable outcome; and (4) patients presenting to the ED with minor diseases unrelated to SARS-CoV-2 infection (n = 20). Besides standard of care diagnostics, 177 circulating proteins related to inflammation and cardiovascular disease were analyzed using proximity extension assay (PEA, Olink) technology. RESULTS: Comparative proteome analysis revealed 14 distinct proteins as highly associated with SARS-CoV-2 infection and 12 proteins with subsequent hospitalization (p < 0.001). ADM, IL-6, MCP-3, TRAIL-R2, and PD-L1 were each predictive for death (AUROC curve 0.80-0.87). The consistent increase of these markers, from hospital admission to intensive care and fatality, supported the concept that these proteins are of major clinical relevance. CONCLUSIONS: We identified distinct plasma proteins linked to the presence and course of COVID-19. These plasma proteomic findings may translate to a protein fingerprint, helping to assist clinical management decisions.


Subject(s)
Biomarkers/blood , COVID-19/blood , Plasma/metabolism , Proteome , Berlin , Blood Proteins , Emergency Medicine , Emergency Service, Hospital , Hospitalization , Humans , Proteomics , SARS-CoV-2 , COVID-19 Drug Treatment
6.
Crit Care Med ; 49(10): 1664-1673, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1452743

ABSTRACT

OBJECTIVES: The rapid diagnosis of acute infections and sepsis remains a serious challenge. As a result of limitations in current diagnostics, guidelines recommend early antimicrobials for suspected sepsis patients to improve outcomes at a cost to antimicrobial stewardship. We aimed to develop and prospectively validate a new, 29-messenger RNA blood-based host-response classifier Inflammatix Bacterial Viral Non-Infected version 2 (IMX-BVN-2) to determine the likelihood of bacterial and viral infections. DESIGN: Prospective observational study. SETTING: Emergency Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany. PATIENTS: Three hundred twelve adult patients presenting to the emergency department with suspected acute infections or sepsis with at least one vital sign change. INTERVENTIONS: None (observational study only). MEASUREMENTS AND MAIN RESULTS: Gene expression levels from extracted whole blood RNA was quantified on a NanoString nCounter SPRINT (NanoString Technologies, Seattle, WA). Two predicted probability scores for the presence of bacterial and viral infection were calculated using the IMX-BVN-2 neural network classifier, which was trained on an independent development set. The IMX-BVN-2 bacterial score showed an area under the receiver operating curve for adjudicated bacterial versus ruled out bacterial infection of 0.90 (95% CI, 0.85-0.95) compared with 0.89 (95% CI, 0.84-0.94) for procalcitonin with procalcitonin being used in the adjudication. The IMX-BVN-2 viral score area under the receiver operating curve for adjudicated versus ruled out viral infection was 0.83 (95% CI, 0.77-0.89). CONCLUSIONS: IMX-BVN-2 demonstrated accuracy for detecting both viral infections and bacterial infections. This shows the potential of host-response tests as a novel and practical approach for determining the causes of infections, which could improve patient outcomes while upholding antimicrobial stewardship.


Subject(s)
Bacterial Infections/diagnosis , RNA, Messenger/analysis , Virus Diseases/diagnosis , Aged , Aged, 80 and over , Area Under Curve , Bacterial Infections/blood , Bacterial Infections/physiopathology , Berlin , Biomarkers/analysis , Biomarkers/blood , Emergency Service, Hospital/organization & administration , Emergency Service, Hospital/statistics & numerical data , Female , Humans , Male , Middle Aged , Prospective Studies , RNA, Messenger/blood , ROC Curve , Virus Diseases/blood , Virus Diseases/physiopathology
7.
Case Rep Dermatol ; 13(3): 450-456, 2021.
Article in English | MEDLINE | ID: covidwho-1416745

ABSTRACT

Herein, we report a case of a new-onset Raynaud's phenomenon (RP), which occurred in an otherwise healthy 31-year-old Caucasian woman, who lacked any known risk factors and associations with possible causes for secondary RP. However, 2 weeks prior to the development of RP, the patient had received her first injection of the COVID-19 vaccine containing ChAdOx1-SARS-COV-2. The patient presented with well-demarcated, white-pale, cold areas involving the middle fingers of both hands and the ring finger of the right hand, which were triggered by exposure to cold environment and accompanied by a sensation of numbness. Infrared thermography revealed notable temperature differences of up to 10.9°C between affected and nonaffected fingers. Coagulation and immunological parameters, including cryoglobulins and pathological autoantibodies, were within the normal range and antibodies to the heparin/platelet factor 4 complex not detectable. It remains unclear if the development of RP in our patient is causally related to antecedent COVID-19 vaccination; however, the temporal connection to the vaccination, the complete absence of RP in her past medical history, and the lack of any risk factors and triggers raise the suspicion of a yet unknown association with the vaccine. Whether a clear association between the development of RP and COVID-19 vaccination exists or whether RP represents a bystander effect needs to be awaited in case observational reports on RP accumulate. Given the steadily rising numbers of people receiving COVID-19 vaccinations, physicians may remain alert to still unrecognized side effects.

8.
Emerg Microbes Infect ; 10(1): 1515-1518, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1313723

ABSTRACT

We show a shift in the prevalence of respiratory viral pathogens in community-acquired pneumonia patients during the COVID-19 pandemic. Our data support the efficiency of non-pharmaceutical interventions on virus circulation except for rhinoviruses. The consequences of an altered circulation on subsequent winter seasons remain unclear and support the importance of systematic virological surveillance.


Subject(s)
COVID-19/epidemiology , Community-Acquired Infections/epidemiology , Pneumonia/epidemiology , Respiratory Tract Infections/epidemiology , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/virology , Community-Acquired Infections/microbiology , Community-Acquired Infections/virology , Female , Germany/epidemiology , Humans , Male , Middle Aged , Pandemics , Pneumonia/microbiology , Pneumonia/virology , Prevalence , Prospective Studies , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Young Adult
10.
TH Open ; 5(1): e43-e55, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1075296

ABSTRACT

COVID-19 (coronavirus disease 2019) patients often show excessive activation of coagulation, associated with increased risk of thrombosis. However, the diagnostic value of coagulation at initial clinical evaluation is not clear. We present an in-depth analysis of coagulation in patients presenting to the emergency department (ED) with suspected COVID-19. N = 58 patients with clinically suspected COVID-19 in the ED were enrolled. N = 17 subsequently tested positive using SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) polymerase chain reaction (PCR) swabs, while in n = 41 COVID-19 was ruled-out. We analyzed both standard and extended coagulation parameters, including thromboplastin time (INR), activated partial thromboplastin time (aPTT), antithrombin, plasminogen, plasminogen activator inhibitor-1 (PAI-1), D-dimers, and fibrinogen at admission, as well as α2-antiplasmin, activated protein C -resistance, factor V, lupus anticoagulant, protein C, protein S, and von Willebrand diagnostics. These data, as well as mortality and further laboratory parameters, were compared across groups based on COVID-19 diagnosis and severity of disease. In patients with COVID-19, we detected frequent clotting abnormalities, including D-dimers. The comparison cohort in the ED, however, showed similarly altered coagulation. Furthermore, parameters previously shown to distinguish between severe and moderate COVID-19 courses, such as platelets, plasminogen, fibrinogen, aPTT, INR, and antithrombin, as well as multiple nonroutine coagulation analytes showed no significant differences between patients with and without COVID-19 when presenting to the ED. At admission to the ED the prevalence of coagulopathy in patients with COVID-19 is high, yet comparable to the non-COVID-19 cohort presenting with respiratory symptoms. Nevertheless, coagulopathy might worsen during disease progression with the need of subsequent risk stratification.

11.
Biomarkers ; 26(3): 213-220, 2021 May.
Article in English | MEDLINE | ID: covidwho-1030957

ABSTRACT

BACKGROUND: In the emergency department (ED) setting, rapid testing for SARS-CoV-2 is likely associated with advantages to patients and healthcare workers, for example, enabling early but rationale use of limited isolation resources. Most recently, several SARS-CoV-2 rapid point-of-care antigen tests (AGTEST) became available. There is a growing need for data regarding their clinical utility and performance in the diagnosis of SARS-CoV-2 infection in the real life setting EDs. METHODS: We implemented AGTEST (here: Roche/SD Biosensor) in all four adult and the one paediatric EDs at Charité - Universitätsmedizin Berlin in our diagnostic testing strategy. Test indication was limited to symptomatic suspected COVID-19 patients. Detailed written instructions on who to test were distributed and testing personnel were trained in proper specimen collection and handling. In each suspected COVID-19 patient, two sequential deep oro-nasopharyngeal swabs were obtained for viral tests. The first swab was collected for nucleic acid testing through SARS-CoV-2 real-time reverse transcriptase (rt)-PCR diagnostic panel (PCRTEST) in the central laboratory. The second swab was collected to perform the AGTEST. Analysis of routine data was prospectively planned and data were retrieved from the medical records after the inclusion period in the adult or paediatric ED. Diagnostic performance was calculated using the PCRTEST as reference standard. False negative and false positive AGTEST results were analysed individually and compared with viral concentrations derived from the calibrated PCRTEST. RESULTS: We included n = 483 patients including n = 202 from the paediatric ED. N = 10 patients had to be excluded due to missing data and finally n = 473 patients were analysed. In the adult cohort, the sensitivity of the AGTEST was 75.3 (95%CI: 65.8/83.4)% and the specificity was 100 (95%CI: 98.4/100)% with a SARS-CoV-2 prevalence of 32.8%; the positive predictive value was 100 (95%CI: 95.7/100)% and the negative predictive value 89.2 (95%CI: 84.5/93.9)%. In the paediatric cohort, the sensitivity was 72.0 (95%CI: 53.3/86.7)%, the specificity was 99.4 (95%CI:97.3/99.9)% with a prevalence of 12.4%; the positive predictive value was 94.7 (95%CI: 78.3/99.7)% and the negative predictive value was 96.2 (95%CI:92.7/98.3)%. Thus, n = 22 adult and n = 7 paediatric patients showed false negative AGTEST results and only one false positive AGTEST occurred, in the paediatric cohort. Calculated viral concentrations from the rt-PCR lay between 3.16 and 9.51 log10 RNA copies/mL buffer. All false negative patients in the adult ED cohort, who had confirmed symptom onset at least seven days earlier had less than 5 × 105 RNA copies/mL buffer. CONCLUSIONS: We conclude that the use of AGTEST among symptomatic patients in the emergency setting is useful for the early identification of COVID-19, but patients who test negative require confirmation by PCRTEST and must stay isolated until this result becomes available. Adult patients with a false negative AGTEST and symptom onset at least one week earlier have typically a low SARS-CoV-2 RNA concentration and are likely no longer infectious.


Subject(s)
Antigens, Viral/blood , COVID-19/diagnosis , Emergency Service, Hospital , Immunoassay/methods , SARS-CoV-2/immunology , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL